The volcanic moon

Jupiter's moon Io, is one of the most exotic places in the solar system. It is the most volcanic body known, with lava flows, lava lakes, and giant calderas covering its sulfurous landscape. It has billowing volcanic geysers spewing sulfurous plumes to over 500 kilometers high. Its mountains are much taller than those on Earth, reaching heights of 16 kilometers (52,000 feet).

Io orbits closer to Jupiter's cloud tops than the moon does to Earth. This places Io within an intense radiation belt that bathes the satellite with energetic electrons, protons, and heavier ions. As the Jovian magnetosphere rotates, it sweeps past Io and strips away about 1,000 kilograms (1 ton) per second of volcanic gases and other materials. This produces a neutral cloud of atoms orbiting with Io as well as a huge, doughnut shaped torus of ions that glow in the ultraviolet.

The torus's heavy ions migrate outward, and their pressure inflates the Jovian magnetosphere to more than twice its expected size. Some of the more energetic sulfur and oxygen ions fall along the magnetic field into the planet's atmosphere, resulting in auroras. Io acts as an electrical generator as it moves through Jupiter's magnetic field, developing 400,000 volts across its diameter and generating an electric current of 3 million amperes that flows along the magnetic field to the planet's ionosphere.

Discoveries On Io

On January 7, 1610 Galileo Galilei observed three pinpoints of light strung out in a line next to Jupiter. The next evening, these stars seemed to have moved the wrong way, which caught his attention. Galileo continued to observe the stars and Jupiter for the next week. On January 11, a fourth star (Ganymede) appeared. After a week, Galileo observed that the four stars never left the vicinity of Jupiter, appeared to be carried along with the planet, and changed their position with respect to each other and Jupiter. Finally, Galileo determined that what he was observing were not stars, but planetary bodies that were in orbit around Jupiter. This discovery provided evidence in support of the still heretical Copernican solar system and showed that everything did not revolve around the Earth.

In 1676 a Danish astronomer Ole Romer was able to make the first accurate measurement of the speed of light by using eclipse timings of the Galilean satellites with Jupiter's shadow. Another discovery was made by Pierre-Simon de Laplace during the late 1700s when he deduced that the orbital periods of Io, Europa, and Ganymede are nearly in a perfect 1:2:4 ratio. In 1920 this knowledge paved the way for the first estimate of the satellites' masses within an accuracy of 20%. Finally in 1979, the Voyager spacecraft flew past the Jovian system, took high-resolution pictures of the moons, and conducted experiments that provided the first accurate measurements of the moon's dimensions and mass. These in turn were used to calculate the mean density of Io (3.5 g/cm3), Europa (3.0 g/cm3), Ganymede (1.9 g/cm3), and Callisto (1.8 g/cm3).

Facts about Io

  • Age: Io is about 4.5 billion years old, about the same age as Jupiter
  • Distance from Jupiter: Io is the fifth moon from Jupiter. Its orbital distance is about 262,000 miles (422,000 km). Io takes 1.77 Earth-days to orbit Jupiter. Io is tidally locked, so the same side always faces Jupiter
  • Size: Io has a mean radius of 1,131.7 miles, making it slightly larger than Earth’s moon. It has a slight elliptical shape, with its longest axis directed toward Jupiter. Among the Galilean satellites Io ranks third, behind Ganymede and Callisto but ahead of Europa, in both mass and volume
  • Temperature: Io's surface temperature averages about minus 202 degrees Fahrenheit (minus 130 Celsius), resulting in the formation of sulfur dioxide snowfields. But Io’s volcanoes can reach 3,000 F (1,649 C). Io is often referred to as a celestial body of fire and ice

The above information was sourced from Wikipedia